The bacterial DNA replication machinery presents new targets for the development of antibiotics acting via novel mechanisms. One such target is the protein-protein interaction between the DNA sliding clamp and the conserved peptide linear motifs in DNA polymerases. We previously established that binding of linear motifs to the sliding clamp occurs via a sequential mechanism that involves two subsites (I and II). Here, we report the development of small-molecule inhibitors that mimic this mechanism. The compounds contain tetrahydrocarbazole moieties as "anchors" to occupy subsite I. Functional groups appended at the tetrahydrocarbazole nitrogen bind to a channel gated by the side chain of M362 and lie at the edge of subsite II. One derivative induced the formation of a new binding pocket, termed subsite III, by rearrangement of a loop adjacent to subsite I. Discovery of the extended binding area will guide further inhibitor development.
展开▼